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Abstract 
 
 

Optimizing over power-log utility functions allow for the inclusion of downside loss aversion, a broader 
range of investor preferences, and account for higher-order moments like skewness and kurtosis in the 
optimization process. We implement multi-period power-log optimization (PLO) with annual rebalancing on 
a portfolio consisting of a treasury security, the S&P500 index and a call option on the index. PLO results in 
higher geometric average realized returns with lower tail risk, and lower standard deviation than mean-
variance efficient portfolios with the same ex-ante expected returns. It also provides better downside 
protection against large, negative return surprises, such as the down markets in 2002 and 2008. 
 

 

1. Introduction 
 

Ever since Markowitz (1953) introduced the idea of a mean-variance efficient portfolio, his technique has 
been the dominant method for portfolio selection. Its failings are well known. It works well when asset returns are 
approximately normal, but when asset returns are skewed and have fat tails, mean and variance are insufficient for 
specifying investor preferences3. These two moments alone do not allow for the contribution of positive skewness in 
securities like call options or bonds, which many investors find desirable. In fact, mean-variance optimization results 
in treating the upper tail returns as suboptimal since they produce a higher variance of return (see Pedersen 2001). 
Additionally, mean-variance analysis can lead to hidden risk in a portfolio when asset returns have fat tails because of 
its assumption of normality (see Leland 1999). 

 

Several methods have been developed for portfolio construction with assets that have skewed and fat-tailed 
returns, but they are focused on controlling lower tail risk. They trade off mean return for a portfolio against some 
measure of downside risk, such as semi-variance (Markowitz 1959), or lower partial moments (Bawa 1978, Fishburn 
1977, Jarrow and Zhao 2006). Semi-variance fails to account for higher moments such as kurtosis and skewness, while 
lower partial moments assume a risk-neutral investor on the upside. Other methods that account for downside risk 
like value at risk, (RiskMetrics 1996), or conditional value at risk (Basak and Shapiro 2001, Rockafellar and Uryasev 
2000) are not generated from investor preferences, but enter as constraints in the utility maximization problem. Also, 
while these methods are successful at constraining for downside risk, none take advantage of upper tail gains. As 
stated in Leland (1999), on semi-variance and value at risk “These approaches are not grounded in capital market 
equilibrium theory and may themselves spuriously identify superior or inferior managerial performance.” The power-
log utility function (Kale, 2006) combines behavioral finance with multi-period portfolio theory to resolve all of the 
above issues.  

                                                             
1 Ph.D., CFA, St. Mary’s College of California 
2 Ph.D., St. Mary’s College of California 
3 Patton (2004) showed that knowledge of both skewness and asymmetric dependence leads to economically significant gains, in 
particular, with no shorting constraints. Harvey, Liechty, Liechty, and Müller (2010) proposed a method for optimal portfolio 
selection involving a Bayesian decision theoretical framework that addresses both higher moments and estimation error. They 
suggested that incorporating higher-order return distribution moments in portfolio selection is important. 
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It is a two-segment function, where the utility of gains is modeled with a log utility function and the utility of 
losses is modeled with a power utility function with power less than or equal to zero4. It combines the maximum 
growth characteristics of the log utility function on the upside, with the scalable downside protection characteristics of 
the power function on the downside. 
 

It is defined as, 

 

 
 

The following three characteristics make power-log utility functions more representative of investor 
preferences than say, the quadratic utility functions of Markowitz (1952) or the other downside loss aversion 
techniques described above. First, optimizing over these utility functions requires the specification and use of the 
entire joint distribution of asset returns. All the moments and cross-moments of the distribution I cluding mean, 
variance, skewness, kurtosis of asset returns, and correlation, coskewness and cokurtosis between asset returns are 
taken into account. If some of the assets have return distributions that are skewed, the optimization process produces 
portfolios with the positively skewed return distributions that reflect the growth maximization and loss aversion 
properties. Other studies, such as Harvey, Liechty, Liechty and Muller (2010), and Hitaj, Martellini and Zumbrano 
(2010), account for a subset of the moments and cross-moments of the asset return distribution, but do not take into 
account all the moments and cross-moments. Second, power-log utility functions are continuously differentiable 
across the entire range of returns. The slope of the log function that is used for gains is 1 when return is zero, and the 
slope of the power function that is used for losses is also 1 when the return is zero, for all powers less than or equal to 
zero. Thus, even though power-log utility functions are steeper for negative returns than they are for positive returns, 
they do not have a kink at a return of zero, and that allows the development of fast optimization algorithms for 
portfolio selection. The basis of the algorithm used for this study is a nonlinear mathematical programming algorithm 
based on an accelerated conjugate direction method developed by Best and Ritter (1976), and has a superlinear rate of 
convergence5. 

 

Third, across the entire domain of returns, the power-log utility functions are characterized by increasing 
utility, and diminishing marginal utility as returns increase. Thus, they conform partially to the Tversky and Kahneman 
(1991, p. 1039) postulates of reference dependence and loss aversion, and the S-shaped utility function from prospect 
theory. Power-log utility functions exhibit Tversky and Kahneman’s postulate of diminishing sensitivity for gains, but 
they do not exhibit diminishing sensitivity for losses, which models risk seeking behavior that is represented by a 
convex function for losses. Power-log utility functions are characterized by an increasing  sensitivity to losses as the size 
of losses increases, which represents risk averse behavior that is modeled with a concave function. As a result, power-
log utility functions are concave for the entire domain and model risk averse investor behavior across the board. 
While prospect theory is appropriate as a descriptive model for explaining speculative behavior, it is not appropriate as 
a normative model of investor preferences for constructing portfolios. The experiments in support of prospect 
theory, such as those described in Kahneman and Tversky (1979), are designed as gambles where only a small fraction 
of an individual’s wealth is at stake and do not apply to investors who are investing significant portions of their 
wealth, for example for their retirement funds. Cremers, Kritzman and Page (2005) find that investors with S-shaped 
preferences are attracted to kurtosis as well as negative skewness, which is contrary to the wellknown investor 
preference for positive skewness in returns. Thus, when compared to Kahneman and Tversky’s S-shaped utility 
function, the power-log utility functions’ increasing sensitivity to losses is a better representation of investor 
preferences for constructing portfolios. In fact, for power-log utility functions the utility associated with a 100% loss 
is negative infinity.  

                                                             
4 The log utility function is a special case of the power utility function. As the power gamma goes to zero in the limit, the utility 
function reverts to log utility (Grauer and Hakanssson, 1982). 
5 The authors thank Financiometrics Inc. for access to its optimization algorithms. 
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The powerlog utility functions will not allow for the selection of a portfolio where a 100% loss has a positive 
probability, and this is not true of prospect theory’s S-shaped utility function. Thus, power-log utility functions work 
very well as a normative model for representing investor preferences. Figure 1 shows an example of a power-log utility 
function with downside powers of –1 and -15. The utility function for gains is the log utility function, and utility 
functions for losses are the power function with powers of -1 and -15. Thus, investors can vary the level of downside 
protection they build into their portfolios by changing the downside power and lower values of the downside power 
represent greater aversion to losses since the penalty for losses increases. 

 
 

Figure 1: Power-Log Utility Functions with Downside Power -1 and -15 
 

In this paper, we use empirical data from 1996 through 2009 for a treasury security, the S&P500 index and a 
call option on the index, to test power-log optimization with annual rebalancing over multiple periods. We rebalance 
the portfolio using a distribution of non-clairvoyant, ex-ante returns and have the PLO maximize expected utility to 
match the expected returns from a meanvariance optimization on the same distribution. For virtually the entire range 
of investor preferences from high risk to low risk, optimal power-log portfolios deliver higher geometric average 
realized returns with lower tail risk and lower standard deviation than mean-variance efficient portfolios that have the 
same ex-ante expected returns. We also find that optimal powerlog portfolios provide much better downside 
protection against large, negative return surprises than the matched mean-variance efficient portfolios, for example, in 
the years 2002 and 2008 when the market was down substantially. In down markets, it is common for portfolio 
managers to write call options to profit from the premiums when the calls expire worthless. We also find, surprisingly, 
that it is always suboptimal for portfolio managers to write call options when they believe the market will be down. 
Our results show that they are better off going long on the call option and short on the underlying index itself. 
 

2. Methodology 
 

The expected utility criterion developed by Von Neumann and Morgenstern (1944), and Savage (1964) gives 
us the following one-period optimization problem for selecting assets weights: 
 

Maximize 
 

 
where, 
 

s scenario s, and the summation is over all scenarios  
ps probability of scenario s 
Us utility in scenario s, based on the portfolio return in the scenario, rs, 

 

where the utility function is the log function in Equation 1 
 

The portfolio return in scenario s is calculated as a weighted average of the returns to the assets in the 
portfolio,  
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where, 

 

i asset i, and the summation is over all assets in the portfolio 
wi investment weight of asset i in the portfolio 
ris return to asset i in scenario s 

 

For our empirical test over multiple periods, we construct optimal portfolios using power-log utility functions 
and rebalance them once a year. The assets in the portfolio are a one-year treasury security, the S&P500 index, and the 
closest to the money call option on the S&P500 index with approximately one year to expiration. The data is for the 
years 1996-2009, which includes periods with wide swings in the stock market6. For each year in the sample period, 
the portfolio is purchased on the December expiration date of the call option and sold on the December expiration 
date of the following year, which is the rebalancing date. In other words, portfolio rebalancing is synchronized with 
the December expiration dates of the call options. For example, for the first holding period an optimal portfolio is 
constructed and purchased on December 20, 1996, the expiration date in December 1996; it is held for about a year 
and sold on December 19, 1997, the expiration date in December 1997, when a new optimal portfolio is constructed 
and purchased for the following year. To construct the optimal portfolio at the beginning of this one-year holding 
period, we select the closest to the money call option that expires on December 19, 1997, for inclusion in the 
portfolio. The one-year constant maturity yield on a treasury as of December 20, 1996 is used to calculate the riskless 
return for the holding period. To calculate portfolio values we use market prices for the S&P500 index at the 
beginning and end of the holding period. For the call option price, we use the average of the closing bid and ask on 
the first day of the holding period, and the expiration value on the last day of the holding period, because the 
expiration value gives us a more reliable valuation of the call than the market price on the expiration date. 

 

To construct an optimal portfolio with a power-log utility function, we need the joint distribution of returns 
for all assets that can be included in the portfolio. The key distribution for our empirical test is the distribution of 
returns for the S&P500 index. For this, we use a deterministic, simulated standard normal distribution to represent the 
S&P500 index. We transform this distribution and assign it a mean of 10%, and a standard deviation equal to the 
Black-Scholes implied volatility of the selected calls, which is also the reason for selecting calls that are closest to the 
money at our rebalancing date. The calculated Black-Scholes implied volatility gives us a market forecast for the 
standard deviation of return for the holding period. Since there is no universally accepted forecast for the mean of the 
distribution, we use 10% as the mean log return for the index, which is its approximate geometric mean for the 
postwar period. We examined the shape of the distribution of annual S&P500 returns and performed three separate 
EDF tests on annual S&P 500 returns from 1950 through 2011: the Lilliefors test, the Jarque-Bera test and tge !2 test, 
with the null hypothesis that the return distribution is lognormal, and got p-values of 0.7107, 0.3371 and 0.6797 
respectively. Thus, we cannot reject the hypothesis of lognormality at the 5% level of significance. Assuming that the 
distribution of S&P500 returns is approximately lognormal, also allows us to use the Black-Scholes option pricing 
model to calculate the implied volatility for the index from the price of the closest to the money call option at the 
beginning of each holding period7. 

 

To avoid the problem of isolated randomly generated points in the tails of the simulated S&P500 return 
distribution for a given holding period, we use deterministic simulation instead of Monte Carlo simulation. We start by 
generating one million equal probability points by dividing the domain of the lognormal return distribution into one 
million intervals of equal probability, and then calculate the median for each interval. Next we use a clustering 
algorithm, Kale (2011), to reduce the one million points to 10,000 clusters, where each cluster’s probability 
corresponds to the number of points in the cluster. Using one million equal probability intervals to start with, gives us 
sufficient and consistent representation in the tails of the return distribution, and reducing them to 10,000 points 
makes simulation more efficient. 

 

                                                             
6 The S&P500 index data is from yahoo.com, and the options data is from CSIData. 
7 Note that while we find that the annual S&P500 returns are approximately lognormal, this is not true for weekly, or daily 
S&P500 returns. As the frequency of returns increases, the return distribution becomes markedly leptokurtic, and then neither the 
Black-Scholes implied volatility nor a lognormal distribution assumption would be appropriate for simulating future returns. 
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To generate the call option returns that correspond to the simulated S&P500 index returns for a given 
holding period, we use the market value for the index at the beginning of the holding period, and the 10,000 simulated 
index returns to generate 10,000 index values for the end of the holding period. Next we calculate the expiration 
values for the closest to the money call option based on these index values and the strike price, and then use these 
expiration values and the call price at the beginning of the holding period to calculate the 10,000 call option returns 
that correspond to the 10,000 S&P500 index returns. We combine the return distributions for the treasury, the 
S&P500 index and the call option on the index, to create a joint distribution for the three assets with 10,000 
observations for each holding period, and use it for optimization with power-log utility functions. Although the 
power-log optimization algorithm we have used for this study can create portfolios with long or short positions in any 
of the assets, we put in a “no short sales” constraint on the S&P500 index and the call option in order to make it 
easier to interpret the results. To provide a context for evaluating the performance of the optimal power-log 
portfolios we construct mean-variance efficient portfolios with matched ex-ante returns. While it can be argued that 
mean-variance analysis is inappropriate for constructing portfolios containing options since their return distributions 
have significant higher moments, it is the most widely used and familiar  methodology for portfolio construction and 
does provide an interesting comparison. In the sections that follow we compare the portfolio compositions and risk 
and return characteristics of portfolios constructed with the two techniques. 
 

3. Results 
 

We start by constructing optimal portfolios with the log utility function, by setting the downside power to 
zero in the power-log utility function. The resulting portfolios are the riskiest in our sets of portfolios. Next we 
construct the matched mean-variance efficient portfolio for each period, such that its exante expected return equals 
the ex-ante expected return for the optimal power-log portfolio. As seen in Table 1, the mean-variance efficient 
portfolios are very different from the optimal powerlog portfolios in all but one of the periods8, and most of them 
have zero exposure to the call option. The positive skewness of the call option returns and its higher upper tail returns 
are treated as higher risk in the mean-variance optimization (MVO). To evaluate the performance of the optimal 
portfolios, we use realized returns for the three assets. Table 1 shows realized returns for the optimal Power-Log 
portfolios for downside power zero, and matched mean-variance efficient portfolios. The best performance for both 
sets of portfolios was in period 1, where coincidentally the matched portfolios had the same composition, and the 
realized return for them was 68.88%, which is far above the ex-ante expected return of 27.97% for that period. This 
was a result of the stellar market performance in 1997, which produced an S&P500 index return of 28.43% in period 
1, the best return for any period. In theory, the best return for the optimal Power-Log portfolios should be higher 
than that for the mean-variance efficient portfolios because Power-Log optimization preserves the positive skewness 
in asset returns, but for this 1996-2009 data set they turned out to be the same. 
 

                                                             
8 Coincidentally, the asset weights for the mean variance efficient portfolios are identical to those for the optimal power-log 
portfolios in December 1996 and 2006. 
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The two worst returns for both sets of portfolios were in periods 6 and 12, reflecting the big unanticipated 
market losses of 2002 and 2008 respectively. In period 6 the S&P500 index had a return of -20.39%, and in period 12 
it had a return of -38.32%. In both periods the optimal Power-Log portfolios suffered a significantly smaller loss than 
the matched mean-variance efficient portfolios. The difference was particularly dramatic in period 12, where the 
optimal Power-Log portfolio had a return of -31.03%, while the mean-variance efficient portfolio had a return of -
96.21% and came close to bankruptcy. Portfolios selected by using Power-Log optimization should never go bankrupt 
(Rubinstein (1991)), and this is supported by our results, although Rubinstein’s analysis does not account for discrete 
rebalancing and differences between ex-ante and ex-post return distributions. This particular period was also 
interesting in showing us how much more sensitive mean-variance optimization is to small changes in inputs, than 
Power- Log optimization. If we replace the one-year constant maturity treasury yield as our riskless rate with a three-
month constant maturity treasury yield, the optimal Power-Log portfolio’s realized return for this period changes 
from -31.03% to -33.87%, while the matched mean-variance efficient portfolio’s return changes from -96.21% to -
100.00%, i.e., bankruptcy! 

 

Table 1 also shows the geometric average returns over the thirteen periods. They are 6.16% for optimal 
Power-Log portfolios, versus -12.26% for mean-variance efficient portfolios. While the difference in geometric 
average returns is large, the difference in the ending value of a Dollar is dramatic, $2.18 for optimal Power-Log 
portfolios versus $0.18 for mean-variance efficient portfolios. The standard deviation of return is not a particularly 
good measure for risk for skewed return distributions, but what makes the Table 1 numbers interesting is that the 
sample standard deviation of return for optimal Power-Log portfolios, 33.53%, is substantially smaller than the 
sample standard deviation of return for mean-variance efficient portfolios, 50.71%, even though the mean-variance 
efficient portfolios were constructed specifically to minimize variance in each period, given the expected return for 
that period. This is a result of smaller losses suffered by optimal Power-Log portfolios during unanticipated market 
declines. The substantial negative skewness of -1.01 for mean-variance efficient portfolios versus 0.01 for optimal 
Power-Log portfolios also reflects that observation. Figure 3 shows histograms of returns for the two sets of for 
portfolios, and highlights the smaller lower-tail risk of optimal Power-Log portfolios. Figure 2 shows histograms for 
the optimal power-log portfolio returns for downside power zero, and matched mean-variance efficient portfolio 
returns. Optimal power-log portfolios have far smaller lower tail risk than the matched mean-variance efficient 
portfolios, and thus provide far better downside protection against large unanticipated market declines. 
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Figure 2: Realized Returns (1996-2009) 
 

It is tempting to compare the arithmetic average returns of the time series of realized returns for the two 
portfolio construction methods, since there are standard tests for comparing means. For example, a paired differences 
test could be a good test, since it is not affected by the strong correlation between the two series. However, any test 
using arithmetic averages is inappropriate in a multi-period context where we compound returns to judge performance 
over multiple periods, and the distribution of returns is changing from one period to the next. For example, the 
average value of the realized return for optimal power-log portfolios minus the realized return for mean-variance 
efficient portfolios is -2.06%, which might suggest that the performance for optimal power-log portfolios is worse 
than for mean-variance efficient portfolios, but the geometric average return for optimal power-log portfolios is 
6.16% versus -12.26% for the meanvariance efficient portfolios. 

 

While some investors (Samuelson, 1971) may accept the risk associated with portfolios constructed with the 
log utility function, which is a special case of the power-log utility function, the risk is unacceptable for the vast 
majority of investors. The smallest investment in the call option was 17.85% for the optimal power-log portfolio in 
holding period 4, and the largest investment was 46.72% in holding period 9. These large investments in derivatives 
carry a lot of risk, which can be reduced by reducing the downside power (making it more negative), thus increasing 
the penalty for losses. We redid the optimizations for several different downside powers and Table 2 summarizes the 
realized returns for optimal power-log portfolios for five downside powers, 0 through -50, and the matching mean-
variance efficient portfolios. As the downside power decreases, the penalty for losses increases and the optimal 
power-log portfolios become more conservative. The minimum return increases from -39.08% for the downside 
power of zero, to -2.08% for a downside power of -50, and tail risk drops dramatically. 
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Comparing the optimal power-log and mean-variance efficient portfolios in Table 2, we see that the 
minimum return for the optimal power-log portfolios is better than that for the matching mean-variance efficient 
portfolios for every downside power. The optimal power-log portfolios have lower tail risk across the board. On the 
upside, both sets of portfolios had their best return in holding period 1 and the compositions were identical for each 
matched pair of optimal portfolios for all downside powers. Table 2 also shows that the sample standard deviation of 
realized returns is much lower for optimal power-log portfolios than for mean-variance efficient portfolios across the 
board, for both risky and conservative portfolios. The consistency of this result is surprising, since in theory, mean-
variance optimization is supposed to produce portfolios with lower standard deviation for a given level of expected 
return. As mentioned before, this is a result of large unanticipated market declines in some periods, which implies that 
ex-ante and ex-post return distributions are significantly different in those periods. Power-log optimization performs 
better in this type of environment and produces portfolios that have less lower tail risk, and a smaller standard 
deviation of return than matched mean-variance efficient portfolios. Looking at the geometric average realized return 
in Table 2 we see that it is positive for optimal power-log portfolios for each downside power, rising initially from 
6.16% for a downside power of zero, to 6.38% for a downside power of -0.6, and then declining steadily to 4.35% for 
a downside power of -50. According to theory, the downside power of zero, which corresponds to the log utility 
function, should produce the maximum growth portfolio, i.e., the portfolio with the highest geometric average return. 
That would have been true if the ex-ante and ex-post distributions were the same, but that is not the case here since 
there are always unanticipated changes in the economic environment. Large unanticipated negative returns are likely 
to have lowered the geometric average return for downside power zero to less than that for downside power -0.6, 
which provides better protection against large losses. Of course, we might find that for longer sample periods than the 
one used here, portfolios constructed with a downside power of zero outperform all other portfolios, as theory 
predicts. 

 

Comparing the geometric average return for optimal power-log and mean-variance efficient portfolios in 
Table 2, we see that for medium and high risk portfolios the return is far better for optimal power-log portfolios, but 
about the same for the most conservative portfolios. Figure 3 extends these results to 34 downside powers from zero 
to -50, showing the corresponding ending values of a dollar. For the optimal power-log portfolios it rises from $1.74 
for the most conservative portfolios to $2.24 as the ex-ante expected return increases and then drops a little to $2.18 
for the riskiest set of portfolios. For the mean-variance efficient portfolios it also starts at $1.74 for the most 
conservative portfolios, rises to a maximum of $1.92 for the medium risk portfolios and then appears to fall off a cliff 
as the portfolios get riskier and ends up at $0.18 for the riskiest portfolios. 

 
 

Figure 3: Ending Value of $1 (1996-2009) 
 

3.1 Call Writing 
 

When expecting down markets, portfolio managers often write calls against the assets they hold in their 
portfolios. If they are correct, the calls expire out of the money and they reap the call premiums. As power-log 
optimization picks up return characteristics of options we hypothesize that it should also produce a good call writing 
strategy for managers in down markets. To test this, we change the assumption for S&P500’s expected log return 
from 10% to -10% to simulate a consistent down market for the joint return distributions for 1996 through 2008. We 
set the lower bound on the weight of the riskless asset, the S&P500 index and the close to the money call option on 
the index to -900%, and the upper bound to 900% to permit significant leverage. The other inputs to the optimization 
remain unchanged. 
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Table IX shows the weights and returns for the optimal power-log portfolios for downside power -50, and 
for the matched mean-variance efficient portfolios. None of the optimal power-log portfolios have a short position in 
the call option in any of the years. Instead, they all have a large short position in the S&P500 index, which is 
counterbalanced to a large extent by a long position in the call option. The short position in the S&P500 index takes 
advantage of the negative expected return, while the long position in the call option hedges a big portion of the 
S&P500 exposure and adds positive skewness to the portfolio’s return distribution. In contrast, the meanvariance 
efficient portfolios have a significant short position in the call option in about half of the years, in addition to a large 
short position in the S&P500 index in every year; it does not take advantage of the skewness in option returns. We 
tested this on other more aggressive downside powers as well. This indicates that all investors, aggressive and 
conservative, are better off taking a short position in the underlying asset along with a long position in the call option, 
instead of writing calls. 
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4. Conclusion 

 

Mean-variance analysis has been the standard method for portfolio selection for over half a century, but it 
penalizes upper tail gains and lower tail losses equally when reducing risk by reducing variance of portfolio return. It 
works well for assets whose returns have approximately normal distributions, since investor preferences can be 
completely specified with mean and variance. For portfolios containing assets such as options and bonds, whose 
return distributions are skewed and have fat tails, mean and variance are insufficient for specifying investor 
preferences. Methods of portfolio construction that have been developed for these types of portfolios typically focus 
on controlling downside risk, and are ad-hoc methods that are not based on utility theory. Power-log utility functions 
combine behavioral finance with multi-period portfolio theory to represent investor preferences realistically, and 
model the entire range of investor preferences from high-risk maximum growth portfolios to conservative portfolios 
with a lot of downside protection. Using power-log utility functions to optimize portfolios containing a treasury 
security, the S&P500 index and a call option on the index, we show that for virtually the entire range of investor 
preferences, optimal power-log portfolios deliver higher geometric average realized returns with lower tail risk and 
surprisingly lower standard deviation, than mean-variance efficient portfolios that have the same ex-ante expected 
returns. We also find that the optimal power-log portfolios provided much better downside protection against the 
large unanticipated market downturns in 2002 and 2008 than the corresponding mean-variance efficient portfolios. 
Since it works for portfolios containing assets with normal and non-normal returns, power-log portfolio optimization 
should work well in all portfolio optimization applications. 
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