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Abstract 
 
 

We used portfolio sorting and Fama-MacBeth cross-sectional regression approach to test the validity of the 
Capital Asset Pricing Model (CAPM) in the 19th century.  The CAPM is not valid in the 19th century, but we 
caution not to discard the model completely. Since the high fluctuations in the times' series of the slopes 
(coefficient of the relationship between expected returns and beta) cover the capability to reach a solid 
conclusion concerning validity of the CAPM. Size (price time’s shares outstanding) effects exist on the 19th 
century, but it disappears when stocks are value weighted to form portfolios. Detail evidence reveals that 
size effect is contributed by small size group of stocks, which accounts for only 0.35% of the total market 
size. 
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Introduction and Literature Review 
 

This paper investigates the cross-sectional relationship between stock returns, beta and size measured as 
market capitalization. We use 19th century Belgium data. It might be interesting to research these cross-sectional 
relationships on contemporary markets; however, this might not add independent information in an integrated global 
market. It is possible that, because of the common shocks, similar relationships will be visible across different 
markets. Therefore, studying the cross-sectional relationship in an independent but large non-US 19th century market 
may provide strong out of sample evidence. 

 

Since the development of the CAPM in the 1960s by Sharpe (1964), Lintner (1965) and Mossin (1966), the 
literature has questioned the validity of the model and suggest other characteristics than beta to explain expected 
return. The empirical study which supports the CAPM model in the 1970s is Fama and MacBeth (1973). It 
investigates whether there is a positive linear relationship between expected returns and beta. They also examine 
whether other parameters such as beta square and idiosyncratic risk can explain expected returns. On the contrary, 
Lakonishok and Shapiro (1986) and Ritter and Chopra (1989) do not detect any significant relationship between beta 
and expected returns. On the relationship between expected returns and size, Banz (1981) finds a size effect in stock 
returns. The effect implies the propensity for stocks with low market capitalization to outperform those with high 
market capitalization. With the debate on the validity of the CAPM still ongoing, Fama and French (1992)nailed beta 
in the coffin by finding no association between betas and average returns, even when beta is the only explanatory 
variable in their cross-sectional regressions. Instead, they conclude that size and the book-to-market value ratio can 
explain the variation in expected returns when placed together in a cross-sectional regression.  Majority of the 
literature on beta and size focuses on post-World War I return data and even only in the US. The view is that, the 
determination of stock return using beta and size may have been discovered out of luck through data snooping bias 
(see Lo and MacKinlay (1990)). In this case, the effect should not be found in other periods.  
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Dimson and Marsh (1999) test the presence of the size effect by using FTSE all share monthly return data 
from the period 1955 to 1998 and document that the effect has disappeared after 1979. In addition, Schwert (2003) 
documents that the size effect disappears after 1981 on the US market using monthly data for the period 1962 to 
2002.Harowitz el al. (2000) provides three possible explanations for the disappearance of the size effect: (1) data 
mining (2) the increased popularity of the passive investment which would have driven up prices of large companies 
and (3) the awareness of investors after publication of the research results has eliminated profit 
opportunities.Grossman and Shore (2006) and Annaert and Mensah (2014)in their quest to establish these 
relationships out of sample, use pre-World War I UK  and Brussels Stock Exchange data respectively to present 
evidence against the size effect. They find size effect among extremely small stocks, which account for about 0.2% to 
0.35% of market capitalization, but the size effect disappears when these stocks are eliminated. Further investigation 
by Ye and Turner (2014) finds stock return to be related to beta but not size.  

 

To distinguish between the possible data snooping bias and the persistence of these relationships, we 
investigate the effect on another dataset. This is to investigate whether; the size-beta-stock return relationship is 
initially discovered outside the existing study. To add to the existing literature on asset pricing, this paper introduces 
high quality 19th century Brussels Stock Exchange (BSE) data to test the validity of CAPM and the presence of the 
size effect. We investigate this historical data to differentiate between the rational asset pricing and the behavioral 
finance phenomena. Thus, using periods of severe economic and financial distress to investigate the behavior and the 
tradability of the patterns found. In addition, investigating such relationship using database not infested with any data 
mining act and also capturing a period (1873-1914) of which the exchange was ranked the top 10 in the world (Cassis 
(2006))may help to shed some light on the size, beta, stock return relationship issues, as well as indirectly testing the 
data-snooping hypothesis. It will also provide dataset for testing the alternate rationalization of other cross-sectional 
patterns. This paper presents large improvement over other studies on historical markets by considering both equal 
and value weighted portfolio formations. 

 

To this end, we resort to the decile portfolio sorting and the Fama-MacBeth (FM)cross-sectional regression 
methods to investigate the relationship between size, beta and the averagestock return. We find no relationship 
between beta and expected returns. We also find size effect on the 19th century BSE, but it disappears when stocks are 
value weighted to form portfolios. Detailed investigation reveals that the size effect in our data is confined to small 
size stocks, which represents on average 0.35% of the total market capitalization. The remainder of the paper is 

organized as follows: In section 2, we show the expected returns of portfolios sorted on Market Model betas  MM , 

Dimson’s betas  D  and Vasicek betas  V . FM cross-sectional regressions are used to test the relationship 

between beta and expected returns (CAPM) in subsection 3. In section 4, we investigate the effect of size and beta on 
excess returns by using the sorting method. In section 5, we use FM cross-sectional regression analysis to confirm the 
above sorting results. Section 6 concludes the paper. 
 

Expected Returns of Portfolios Sorted on Betas 
 

In the sorting method, we rank stocks based on beta and group them to form portfolios. The question 
answered by this method is whether high-beta stocks outperform low-beta stocks. As the aim of this section is to test 
the validity of the CAPM, the method needed to estimate its input is worth consideration. In testing the CAPM, one 
needs to form portfolios in order to improve on the precisions of individual betas. Previous research on the same data 
Mensah (2013) indicates that beta-sorted portfolio should contain at least seven stocks in order to have a reliably 
stable portfolio beta estimate. Figure 1 shows the number of stocks that is included in our sample for portfolio 
formation every year. Evidence from this Figure shows that until 1868 decile portfolios will not have the minimum of 
seven stocks. The changes in legislation in 1867 ease the establishment of a company, which is reflected in the number 
of stocks listed on the BSE. Furthermore, Van Nieuwerburgh et al. (2006) indicate the importance of the long-term 
relationship between the development of the BSE and economic growth in Belgium after legal liberalization.  



Lord Mensah                                                                                                                                                            119 
 
 

 

In addition, as shown Mensah (2013), individual betas before 1868 do not predict well their subsequent five-
year beta.  Based on these reasons, this section and the subsequent ones will focus on the data between 1868 and 
1914. For a stock to be included in the portfolio formation, it must have a minimum of 24-month observations out of 
the 60 months required to estimate beta before the portfolio formation year. In this paper, we do not restrict our 
analysis on stocks with a complete five-year return data as done by other papers. This enables us to capture more 
stocks in the cross-section. Including stocks with at least 24 months returns does not change the descriptive statistics 
of the prior betas (from here on pre-ranking betas).We pay particular attention to the computation of the beta as the 

19th century stock markets were less liquid than their modern counterpart. The first is the market model  MM beta, 

which is the traditional beta. It is the slope coefficient from the regression equation 
 

  ,jt ft MM mt ft tR R R R       (1) 
 

where jtR  is the return on a portfolio or stock for period t , ftR  is the risk free rate for period t , and mtR is the 

market portfolio for period t . 
 

Figure 1: Number of Stocks in Our Selection Criteria for the Entire Period of the Pre-World war I SCOB 

 
We use the value weighted market portfolio constructed by  Annaert et al. (2012) as a proxy for the market 

portfolio. The annualized money market rate, converted to a monthly-rate, is used as a proxy for the risk-free rate. We 
compute the second beta estimate using the Vasicek model. Vasicek (1973)applied the Bayesian correction method by 
utilizing the cross-sectional information of the previous period betas:                                                                   
  



120                                                                               Journal of Finance and Bank Management, Vol. 3(1), June 2015 
 
 

 

 

1 1
2

1

2
1

var
for 1, 2, , ,1 1

var

jt jt

jt
jt

jt

j N



 






 







 


 (0.2) 

 

where jt  is the mean of the posterior distribution of beta for stock j , which serves as the beta forecast. 2


is the variance of the market model regression coefficients, 1jt  . 1jt  is the cross-sectional mean of betas in period

1t  , and   1var jt   is the variance in the cross-section of betas. As a result of the illiquidity on the early markets, 

some stocks systematically may lead or lag behind the market movement, which may produce biased betas, when we 
estimate beta by the market model. Possible explanation for the significant lead (lagged) relationship is because large 
(small) firm prices adjust quickly (slowly) to market wide information. Thus, since the market index used in this 
analysis is heavily weighted towards large stocks, small stock returns have the tendency to lead or lagged relation to 
the market wide returns. We adjust for the lag effect by using the Dimson model to obtain a third beta estimate.   

 

That is, we run the regression: 
 

   ,0 , 1 1 1 ,jt ft j j mt ft j mt ft jtR R R R R R             (0.3) 
 

where ,0j  captures the contemporaneous co-variation between the returns of a stock (portfolio) and the 

market returns. , 1j  captures the correlation between stock’s current period return and the lagged market return. The 

Dimson one-month lagged beta is estimated as ,0 , 1dim j j     , which captures the correlation between the 

current period returns of a stock and current and lagged market returns. For our monthly data, we use only one-
month lag because it has been shown that infrequent trading effect is not a severe problem in our data. In addition, 
Dimson (1979) document that the infrequent trading effect is not severe when monthly returns are used to estimate 
betas.   

 

Stocks are assigned to decile portfolios using the Fama-MacBeth2 breakpoint method. This breakpoint 
method allocates more stocks to the extreme portfolios, which are of much interest because of the formation of the 
hedge portfolio (top ranked portfolio returns minus bottom ranked portfolio returns). The method also ensures that 
no stock is lost in the portfolio formation process. Fama and MacBeth (1973) point out that portfolios formed on 
prior betas are more likely to produce biased betas, since high and low betas are more likely to be estimated with 
errors. To reduce the possible errors in beta estimates, we resort to Fama and French (1992) and Kothari, et al. (1995) 
method to estimate post-ranking betas.  We estimate post-ranking portfolio betas for the entire sample period (1868-
1914) by using value weighted and equally weighted portfolio returns. Specifically, beginning in January 1868, we 
compute betas (pre-ranking) for all stocks using the past 24 to 60 months of return data. We sort stocks into decile 
portfolios based on the pre-ranking betas (univariate sort). Portfolio 1 contains stocks with the lowest betas, while 
portfolio 10 contains stocks with the highest betas. The post-ranking value weighted and equally weighted return for 
each month is calculated for each portfolio.  

                                                             
2If N is the number of stocks in the year t  and n is the number of portfolios required, stocks are allocated to int( / )N n portfolios, where 

 int /N n is the nearest integer less or equal to /N n . The middle portfolios have  int /N n stocks each. If N is even, 

  int / 1/ 2 int /N n N n N n     stocks will be allocated to the first and the last portfolio. If N is odd, one stock will be added 

to the last portfolio. 
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New estimates of pre-ranking betas are calculated in December each year, and the portfolio formation is 
repeated. We account for the possible time-variation in betas by rebalancing stocks in each year. Monthly portfolio 
formation for each year yields 552 monthly returns for each decile portfolio. This process is followed for all the three 

beta estimates  , andMM V dim   .  Table 1 reports the average excess return (time series), standard deviation and 

the post-ranking betas of the ten portfolios. From Panel A, when both pre-ranking and post ranking betas are 
estimated with the market model, beta does not exhibit any relationship with average returns. The average returns do 
not show any pattern as beta progressively increases from low to high beta portfolios.  The result does not change, 
when we consider the value weighted portfolio excess returns. Estimating betas with the Dimson and Vasicek 
methods in Panels B and C does not establish the relationship between beta and expected returns. The most striking 
of all is that the post-ranking betas almost surely follow the ordering of the pre-ranking betas (except the first, second 
and the sixth decile portfolios). The univariate beta sorting results confirm  the Fama and French (1992) findings. 
They use Dimson adjusted betas to establish a flat relationship between beta and average return. We can also compare 
our result to the evidence of Reinganum (1981) who finds no relationship between beta and average return in the 
period 1964-1979. 
 

Table 1: Time Series Mean (%), Standard Deviation (%) and Post-ranking Betas of Decile Portfolios formed 
from Pre-Ranking Betas in Jan. 1868-Dec. 1914 

 

 

Low 1 2 3 4 5 6 7 8 9 High10

0.34 0.13 0.18 0.45 0.45 0.25 0.32 0.23 0.09 0.26
3.91 2.14 1.93 2.88 3.14 3.22 3.68 3.82 4.71 6.67
0.68 0.45 0.53 0.82 1.10 1.19 1.49 1.60 1.94 2.68

0.17 0.18 0.09 0.12 0.40 0.36 0.27 0.16 -0.06 0.05
3.17 1.22 1.62 2.02 2.82 2.90 3.06 3.34 4.07 5.66
0.62 0.33 0.41 0.67 1.01 1.21 1.33 1.45 1.80 2.48

0.18 0.30 0.28 0.26 0.20 0.30 0.35 0.23 0.26 0.32
3.02 3.12 2.33 2.64 3.00 3.07 3.61 4.12 5.13 6.38
0.71 0.64 0.61 0.95 1.26 1.23 1.48 1.71 2.14 2.49

0.06 0.33 0.17 0.32 0.18 0.26 0.30 0.03 0.14 -0.05
1.63 3.35 1.50 1.95 2.79 2.45 3.08 3.56 4.52 5.48
0.39 0.58 0.45 0.75 1.13 0.98 1.32 1.56 1.92 2.32

0.25 0.23 0.26 0.43 0.37 0.25 0.30 0.23 0.20 0.17
3.59 2.32 2.04 3.08 3.09 3.22 3.68 4.70 5.09 5.58
0.92 0.93 0.92 0.97 1.10 1.19 1.45 1.58 1.57 1.55

0.20 0.13 0.12 0.19 0.36 0.36 0.20 0.17 0.06 0.01
2.79 1.24 1.47 2.34 2.71 2.90 3.36 3.39 4.35 4.66
0.80 0.81 0.81 0.86 0.99 1.21 1.36 1.37 1.41 1.39

series portfolio excess returns and the corresponding excess market returns.

 Market Model (Value Weighted)

Dimson  Betas(Equally Weighted)

Vasicek  Betas(Value Weighted)

Mean (%)
Standard Deviation(%)

Beta

Mean (%)

Standard Deviation(%)

Standard Deviation(%)
Beta

At the beginning of each year, stocks  are sorted  based on pre-ranking  betas. The pre-ranking  betas  are  estimated  with  

Beta
Standard Deviation(%)

Panel A

Mean (%)
Standard Deviation(%)

Beta

 Market Model (Equally Weighted)

Mean (%)
Standard Deviation(%)

Beta

Beta

Panel B

Mean (%)
Dimson  Betas(Value Weighted)

Vasicek  Betas(Equally Weighted)

market  model  (β MM ), Vasicek's  adjustment (β V ) model  and  the Dimson's model with  one month lag (β dim ). The Fama-
MacBeth breakpoint technique is used to assign stocks to decile portfolios. Portfolio 1 contains the lowest betas and Portfolio 
10 contains  the  highest betas. Mean (%)  is  the time series average of the portfolio excess returns  for the entire period.We 
compute time series Standard Deviation(%) of the post-ranking excess returns. Betas  are  estimated  by  using  the long time 

Mean (%)

Panel C
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The Cross-Sectional Regressions 
 

The standard approach to test the validity of the CAPM is the sorting and the FM (1973) cross-sectional 
regression. In this section, we use the FM cross-sectional regression to test the robustness of the above sorting result. 
The FM approach also provides a straightforward procedure to test whether the reward for bearing beta risk (risk 
premium) is equal to the excess market returns (the return of the market less the risk free rate) as implied by the 
Sharpe, Lintner and Mossin version of the CAPM.  The method also considers the noisy nature of portfolio or stock 
returns by running monthly cross-sectional regressions of beta sorted portfolio returns on betas. That is, 

0 1jt ft t t jt tR R         (0.4) 

where 0t and 1t  are the regression intercept and slope for month t  respectively. jt is the beta estimated 

from the full sample portfolio returns. The slope coefficient from each regression is treated as the reward per unit of 
the beta risk in that month (risk premium). The time series average of the monthly coefficient is the average reward 
for bearing the beta risk. The standard deviation of the monthly time series of slopes is used to perform a t-test, 
whether the average slope is statistically significant from zero, in other words, whether the beta risk is priced on 
average. Fama and French (1992)rely on full window portfolio betas to mitigate the error-in-variable problem. 
Moreover, it is common to rely on large sample size statistics to draw inferences. This curbs the argument that the test 
can be incorrect if the size of the sample is not large enough for the asymptotic results to provide a good 
approximation. We adopt the method by Fama and French (1992) to estimate full window portfolio betas. The only 
difference is that, we replicate Ibbotson et al. (1997) method and use the portfolio betas for the cross-sectional 
regression instead of assigning the portfolio beta to individual stocks in the portfolio each year. As in the previous 
section, we sort stocks based on their estimated pre-ranking betas (Market model, Vasicek and Dimson betas) and 
form portfolios each year. Portfolio 1 contains the lowest beta stocks whiles portfolio 10 contains highest beta stocks. 
We form equally weighted and value weighted portfolios from the beta sorted group of stocks each month. We repeat 
the process each year to account for time variations in betas. This will produce 552 monthly returns of decile 
portfolios (post-ranking returns).  

 

Table 2: Average Time Series Slopes from the Fama-MacBeth Cross-Sectional Regressions in Jan. 1868-Dec. 
1914 

 

 
 

 t-test
Intercept  βMM  βdim βV H0:Slope=(R m-R f)

Panel A: Equally Weighted Portfolio
0.30% -0.02% 1.41

(2.49) (-0.17)
0.24% 0.02% 0.93
(1.87) (0.14)
0.42% -0.12% 1.05

(1.57) (-0.43)
Panel B: Value Weighted Portfolios

0.24% -0.06% 2.16
(2.92) (-0.48)
0.30% -0.11% 2.63
(3.41) (-0.80)
0.28% -0.10% 0.94
(1.19) (-0.33)

Panel C: Individual Stocks
0.29% -0.01% 1.47
(2.37) (-0.16)
0.26% 0.02% 1.16
(2.10) (0.29)
0.36% -0.06% 1.55

(2.70) (-0.41)

monthly cross-sectional  regression of  post-ranking  portfolio 
excess  returns  on post-ranking beta  estimates. It  also  shows
the  hypothesis  test of  mean slope (risk premium)  equal to the  
average excess market returns as implied by the Sharpe-Lintner
CAPM. Newey West adjusted  t-statistics  are  in  parentheses.

This table reports average time series slopes and intercepts from

 βMM =Market Model beta, βV =Vasicek beta and β dim =Dimson's
 beta with one month lag.
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The post-ranking betas are estimated by using the post-ranking long time series' returns of the decile 

portfolios. We repeat the process for the various estimates of betas  , ,MM V dim   . The post-ranking beta serves as 

the input for equation 1.4 above to perform the cross-sectional regressions. Each month, we regress the post-ranking 
excess returns of the decile portfolios on their corresponding beta (post-ranking) estimates. Eventually, we obtained 
552 cross-sectional regressions for each estimate of beta.  After performing the monthly cross-sectional regressions, 
the time series mean of the slope coefficients is tested for statistical significance. The significance of the average slope 
is tested by using heteroskedastic and autocorrelation consistent standard errors  (Newey and West (1987) correction 

with default  lag of  int (
1

4T ), where T is 552).  
 

Table 2 reports the average intercepts, slopes and their corresponding t-statistics in parentheses. As shown by 
the sorting method, Panel A indicates that, the market model post-ranking beta, estimated with equally weighted 
portfolio returns does not provide a significant relationship with returns. Estimating pre-ranking and post-ranking 
betas with Vasicek and Dimson method does not revive the beta return relationship. Specifically, in Panel A, the mean 
estimated slope for the market model beta is negative, and it is only 0.17 standard errors from zero. The negative 
slope is quite surprising as it goes against the notion of positive risk premium (CAPM).  Fama and French (1992) had 
a negative slope for beta when placed together with size in the cross-sectional regression. The average slope using the 
Dimson beta is 0.02% with a t-statistic of 0.14.  The estimated mean slope with the Vasicek beta is also not significant. 
The values in the last column show the t-statistics from the hypothesis test of average slope (risk premium) equals the 
average excess market return as implied by the CAPM. In Panel A, the hypothesis cannot be rejected at the 5% level, 
regardless how beta is estimated. However, it may be possible that the result is influenced by small stocks, since 
equally weighted portfolios give undue weight to small stocks. Therefore, in Panel B, we use value weighted portfolios 
for the estimation of post-ranking betas and in the cross-sectional regression. The average slope of all the beta 
estimates in the cross-sectional regression is significantly not different from zero. The most strikingly, the hypothesis 
of equality between the average slope and the average excess market return is rejected at the 5% level for the market 
model and the Dimson betas. In Panel C, we follow the traditional FM (1973) rolling window approach by using 
individual pre-ranking betas in the cross-sectional regression.  

 

This is a predictive test since the pre-ranking betas are estimated over a period prior to the period over which 
the cross-sectional regression is performed. The results do not support the CAPM for the three beta estimates.  
Although, portfolio betas are used for the cross-sectional regression, others believe that portfolios may conceal 
important information contained in the individual stock betas. For example, Ang, Liu and Schwarz (2008)  show that 
the slope coefficient (risk premium) of the cross-sectional regression can be estimated more precisely using individual 
stocks instead of portfolios, because creating portfolios reduces the cross-sectional variation in betas.  As a result, we 
apply the Fama and French (1992) approach of estimating full window portfolio beta and assigning the portfolio beta 
to the individual constituent stocks of the portfolio in the cross-sectional regression. This serves as a robustness check 
of the results in Table 2. In Table 3we reports the average cross-sectional regression slopes for both equally weighted 
and value weighted portfolio betas assigned to individual stocks. The market model beta and the Vasicek beta estimate 
still maintains the negative non-significant relationship with average returns. A detailed look at panel A shows that 
Dimson beta is weak in explaining average returns (average slope of 0.02% but with a t-statistic of only 0.16).  
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Table 3: Average Time Series Slopes from Fama-French Cross-Sectional Regression in Jan. 1868-Dec. 1914 
 

 
 

Figure 2: Sixty Months Moving Average of the Cross-Sectional Slopes and Excess Market Returns Using 
Dimson Beta Estimates 

 
 

Using value weighted portfolios (Panel B) to estimate post-ranking betas does not establish the beta return 
relationship. This confirms the Fama and French (1992) result, who asserts that beta is flat in relationship with 
average returns for post 1960s USA data.  Surprisingly, in all cases the hypothesis that the mean slope is equal the 
mean excess market return is not rejected. The positive average slope of the Dimson beta cross-sectional regressions 
(Table 3, Panel A) calls for a detailed look into its time series' behavior with the excess market returns. In addition, the 
average intercept is marginally significant, and it is close to the average risk-free rate as postulated by CAPM. To 
investigate the evolution of the slope coefficient and the excess market return through time, Figure 2 presents five-
year moving average of the estimated slopes and excess market returns.   

t-test
Intercept  βMM  βdim βV H0:Slope=(R m-R f )

Panel A: Fama-French approach (eq)
0.29% -0.02% 1.40
(2.45) (-0.17)
0.24% 0.02% 0.89
(1.81) (0.16)
0.42% -0.12% 1.03

(1.54) (-0.43)
Panel B: Fama-French approach (vw)

0.29% -0.02% 1.39
(2.54) (-0.17)
0.24% 0.03% 0.89
(2.04) (0.19)
0.41% -0.12% 0.97
(1.56) (-0.41)

enthesis.

In  this  table, we assign the post-ranking portfolio beta  to the
 individual  stocks  in  the  portfolio. Portfolios  are rebalanced
 annually.  Mean  slope  and  their  corresponding t-statistic is
 reported  in  parenthesis. We  also  report  the t-statistic for the 
test  of  hypothesis  of  the  mean  slope  equal  to the average 

 beta and βdim = Dimson beta with one lag. eq=equally weighted
vw=value weighted. Newey- West adjusted t-statistics are par-

excess market returns. βMM =Market Model beta, βV =Vasicek 
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The graph shows that the relationship between beta and expected returns varies with time. Surprisingly, there 
seem to be a close correlation between the slopes and the excess market returns for much of the period except 
between the years (1880, 1885) and (1907, 1913). 
 

Table 4:Sub-Period Look into Estimated Slopes and Excess Market Returns 
 

 
 

In Table 4, we report sub-period average slope and intercept from the Fama and French (1992) cross-
sectional regressions using the Dimson beta. The last column shows the t-statistics for the test of equality of the 
average slope and average excess market return. For the first sub-period, the average excess market return (0.04%) is 
very close to the average slope (0.02%).  The null hypothesis of the equal average cannot be rejected. In contrast, the 
null hypothesis that the average slope equals to the average excess market returns is rejected (t-statistic of 2.04) in the 
second sub-period as the difference in magnitude confirms (0.03% average slope and 0.20% average excess market 
returns). Chan and Lakonishok (1993)  document similar results with post 1920 Amex and NYSE data and caution 
researchers and practitioners not to rush in discarding beta. The average slope is significantly less than the average 
excess market return (a difference of about 0.17%). 
 

Expected Returns, Beta and the Size Effect 
 

This section examines the well-known size effect on the 19th century BSE. That is, the propensity for large 
stocks to have consequent lower returns than small stocks. Early works of  Banz (1981), Reinganum (1981), (1983), 
Chan, Chen and Hsieh (1985) and  Chan and Chen (1988) first documented the size effect in modern data. Fama and 
French (1992) present evidence that, size and book-to-market combine to capture the cross-sectional variation in 
average stock returns in the period 1963-1990.  Subsequently, Fama and French (1993) build a three factor model, 
which uses the excess market returns, size and book-to-market factors. The finance literature uses the three-factor 
model as a benchmark model to measure long run abnormal returns, and for many other purposes.  This shows that 
researchers and practitioners have accepted size as an important characteristic to explain the cross-sectional behavior 
of long-run stock returns. On the contrary, a recent paper by Horowitz, Loughran and Savin (2000) presents evidence 
against the size effect in the USA market. It conjectures the magnitude of size effect is not robust when the 
transaction costs and very small stocks (the removal of stocks with market capitalization less than $5million) are taken 
into accounts. Schwert (2003) used US monthly returns data between the year 1962 to 2002 to document that the size 
effect disappears after 1981. With historical data, Grossman and Shore (2006) do not find any presence of the size 
effect on UK data between the years 1870 to 1913. This would imply size is not a systematic risk factor. We present 
similar evidence on the 19th Brussels Stock Exchange covering almost the same period. Each year, we sort (univariate 
sort) stocks based on their size (or market capitalization) at December of the prior year and then split them into decile 
portfolios. The market capitalization is measured as the price of stock times shares outstanding. Again, FM breakpoint 
method is employed to group the stocks into decile portfolios.   

Intercept Slope
0.15% 0.02%
(0.75) (0.09)

0.32% 0.03%
(3.15) (0.21)

H0:Slope=Avg.(R m-R f)
t-test

sub-periods
0.09

(Avg. R m -R f =0.04%)
Jan. 1868-Dec. 1893

Jan. 1894-Dec. 1914
(Avg. R m -R f =0.20%)

2.04

In  this  table, Dimson's  beta  estimated  from   equally weighted
portfolios  is  used  in the cross-sectional  regressions  for  the  two  
sub-periods. Avg. =Average. Newey West t-statistic in parenthesis.
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As in the previous sections, the smallest size stocks are put in decile one and the largest size stocks are put in 
decile ten. Portfolios are rebalanced each year to capture changes in their constituent stock market capital overtime. 
Monthly portfolio returns are calculated as the value and equally weighted averages of the individual stock returns 
within each of the ten portfolios. We compute the relative percentage size of a portfolio as the time series average of 
the cross-sectional sum of the market size of the stocks in the portfolio divided by the sum of the size of stocks in our 
sample. That is, if tn is the number of stocks in a portfolio for the month t , tN is the number of stocks in the cross-

section of our sample for the month t . T is the number of years.  
 

Table 5: Beta Estimate and Mean Excess Return for the BSE Equally Weighted Size Portfolios, Jan. 1868- 
Dec. 1913 
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Two beta estimates of the size portfolios are calculated using the market model and the Dimson’s model 
above. Table 5 reports the beta estimates and the average excess returns of the ten size portfolios during the period 
1868 to 1914.It is well known in empirical finance that small stocks have both a higher beta and average return than 
large stocks. However, this is not the case when size portfolios are value weighted in our sample. Column 3 reveals 
that equally weighted portfolio 1 has an extreme average excess return (1.12%) which is almost three times the next 
largest excess return (0.38% from portfolio 6). The negative relation between size and returns is concentrated in the 
first portfolio as average excess returns sharply drops from portfolio 1 to portfolio 2. This can be confirmed from the 
F-statistic. The null hypothesis of equal average returns is rejected at the 1% significant level when the first decile is 
included in the test. Excluding the first decile portfolio fails to reject the hypothesis. In addition, the effect disappears 
when stocks are value weighted in the portfolios. The average excess return of the equally weighted hedge portfolio 
(mean excess return of -0.95% and t-statistic -3.74) shows that the size effect exists in our data.  

Size Portfolio  % Market Size EW(%) VW(%) βMM β dim βMM β dim EW(%) VW(%)
1 0.35 1.12 0.01 1.61 1.89 1.43 1.56 6.16 5.26
2 0.94 0.29 0.14 1.37 1.45 1.26 1.42 4.45 3.86
3 1.60 0.10 0.10 1.16 1.30 1.16 1.28 3.43 3.37
4 2.43 0.14 0.16 1.43 1.54 1.41 1.52 3.65 3.57
5 3.56 -0.06 0.01 1.09 1.16 1.10 1.16 2.77 2.73
6 5.02 0.38 0.52 1.43 1.46 1.61 1.67 3.93 5.16
7 7.04 0.12 0.10 1.16 1.17 1.16 1.17 2.71 2.67
8 10.06 0.20 0.21 1.35 1.36 1.35 1.38 2.97 2.91
9 15.56 0.16 0.19 1.12 1.13 1.12 1.13 2.45 2.43

10 53.46 0.17 0.15 0.88 0.84 0.79 0.74 1.84 1.68
-0.95 0.14

t-statsitics (-3.74) (0.63)
F-statistics with the first decile 4.04
F-statistics without the first decile 0.79

3 and 4. Relative  market  size is  reported  in  column 2. We also report  the Dimson and market model betas for the

In this table, stocks are ranked each year based  on  their size  at  the  end  of the prior year. They  are  then grouped
deciles for  portfolio  formation. Portfolio  one  contains  the  smallest  size  stocks,  portfolios  ten contains the largest
size stocks. Portfolios are rebalancec each year.Average excess returns of the decile portflios are reported in column

EW  V W Standard DeviationR p -R f

mean of hedge portfolio (%)

decile  portfolios.  We also retport  the  standard  deviation  of  the  portfolio  return series. The Fstatistic for  the test 
of  hypothesis of  equal mean of the porftolio returns is also reported.We test the  hypothesis with and without the 1st
 decile portfolio. EW=equallyweighted and VW=value weighted.
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Surprisingly, the value increases to 0.14% (t-statistic of 0.63) for the value weighted hedge portfolio. Recently, 
Fama and French (2008) used USA data from 1963 to 2004 to document that the size effect owes much of its power 
to micro caps, and that it is marginal for small and big caps. As mentioned earlier on, Grossman and Shore (2006) 
found similar results on the UK market in the same period of our study. For robustness, we eliminate the stocks in 
the first size decile each year and perform the size sorting analysis. As shown in Table 6 the size effect disappears 
when we eliminate the first decile portfolio (portfolio with relative market size of about 0.35%) before the size 
portfolio formation every year.  

 

Table 6: Equally Weighted Portfolios Excess Returns Without the First Size Decile Group 
 

 
 

This corroborates Horowitz et al. (2000), who find no size effect in the period 1963 through to 1981 when 
they eliminate firms with less than five million market value on the USA market. Figure 3 plots the market model 

 MM  and the Dimson  dim  betas with the one-month lag for each equally weighted size portfolio. Clearly, the 

difference between the MM  and dim  progressively gets smaller as stock size gets larger. This shows that, small stock 
betas are underestimated when estimated with the market model. This might be due to non-synchronous trading as 
chapter two reveals that some stocks show lead or lag relationship with the market returns. Ibbotson et al. (1997) find 
similar results on the USA market between the years 1926 and 1994.  They recommend the inclusion of lagged 
information of market returns in the estimation of beta. We also recommend the use of Dimson beta with the one-
month lag when estimating betas for small stocks in our sample.  
 

Figure 3: Size Portfolio Betas 
 

 
 

R p -R f (EW%)
1 0.28
2 0.10
3 0.11
4 -0.05
5 0.39
6 0.12
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8 0.21
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10 0.14
mean of hedge portfolio -0.14
t-statsitic (-0.80)
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This is to curb the possible underestimation of small stock beta. There is a clear negative correlation (-0.79 
with a p-value of 0.0065) between size and portfolio beta (Figure 3). 

 

Fama-MacBeth Cross-sectional Regressions to test the Size Effect 
 

In order to support the above evidence on size effect, we resort to the FM cross-sectional regression method 
adopted by Ibbotson et al. (1997). We regress the cross-section of excess returns for a given month on the beta 
estimate (full window beta estimate) and natural logarithm of size by using an extended equation: 

 0 1 2 1
ln Sizet ft t t t t tt

R R     


      (0.5) 
 

where 0t , 1t  and 2t are the regression intercept and slopes for month t  respectively. t is the full period 
estimate of beta for portfolio. In our sample, the previous section reveals that size is cross-sectionally correlated with 
beta. In addition, Chan and Chen (1988) argue that as size serves as a proxy for betas, they expect the betas of size 
portfolios to be strongly correlated cross-sectionally with size. However, when both characteristics are included in a 
regression, the correlation will increase the standard errors of the estimates, and this will make the outcomes murky to 
interpret. Fama and French (1992) show that when portfolios are formed on size alone, there is evidence of positive 
relationship between average return and beta (CAPM). The correlation between size and beta makes the test on size 
portfolios unable to disentangle the effect of size and betas on average returns. We show that when equally weighted 
portfolios are built on size alone, there is support for CAPM. However, allowing the variations in beta that is 
unrelated to size, it breaks the correlation effect of size and beta even on equally weighted portfolio excess returns. 
We achieve this by conditional double characteristics sorting. Specifically, we first sort stocks based on size and then 
sort within each size group on pre-ranking beta. We find a strong relation between size and average excess return but 
no relation between beta and average return for equally weighted portfolios. The size effect disappears when stocks 
are value weighted in portfolios. The size effect does not exist when we eliminate the first size decile portfolio in the 
analysis each year.  

 

As in the sorting method, we form decile size portfolios. This is to confirm the effect of the correlation 
between size and beta on the beta-return relationship. To separate the correlation effect, we sort stocks into three size 
groups each year. Each size group is then sorted into five groups based on their pre-ranking MM  or dim  beta 
estimates. The equally and value weighted return for each portfolio is computed for each month of the following year. 
The conditional double sorting portfolio formation is repeated at the end of each year. The procedure generates 
fifteen size-beta portfolios for each beta estimate. For all portfolio formations, we use the FM breakpoint technique. 
Post-ranking betas are estimated with post-ranking returns over the entire period from 1868 through to 1914. Each 
month, we regress portfolio excess returns on beta and the natural log of size by using equation 1.5 above. The full 
period post-ranking betas are used in the cross-sectional regressions.  Size is determined at the end of the year before 
the portfolio formation year.  

 

Table 7 reports the time series averages of the slopes and intercept of the regression. The time series standard 
deviations of the slopes and the intercepts and are used to test whether the average is significantly different from zero. 
We use Newey and West (1987)heteroskedastic autocorrelation corrected standard errors for the computation of the 
t-statistics (reported in parentheses). The values in Panel A1 show that, the CAPM is valid for equally weighted 
univariate size-sorted portfolios. Both MM and d im  are positively related to excess return when placed alone in the 
cross-sectional regression. Size is negatively related to excess returns. When size and any of the beta estimates are 
placed simultaneously as independent variables, only the beta estimate is significantly related to excess returns. 
Interestingly, size is sometimes positively insignificantly related to excess returns when placed simultaneously with 
beta in the regressions. This is contrary to the Ibbotson et al. (1997) result, where size is significant when placed 
together with market model betas in the regression.  
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When equally weighted portfolios are formed on size alone, both the market model and the Dimson beta 
with the one-month lag can predict returns at the expense of size.  The relationship between beta and return 
disappears when stocks are value weighted in portfolio formations (Panel A2).  Panels B1 and C1 show the cross-
sectional regression slope and intercept for conditional double-sorted size-βMM and size-βdim portfolios respectively. 
Both betasare no more significantly related to returns, whether placed alone or with size in the regressions. Size is 
statistically significantly related to excess returns, whether placed alone or with any of the beta estimates. This is in 
support of Fama and French (1992) evidence that, the conditional double sort portfolio (size-beta sort) allows 
variations in beta that is unrelated to size, andwould break the correlation between size and beta. 
 

Table 7: Average Time Series Slopes and Intercept from the Fama-MacBeth Cross-Sectional regression: Jan 
1868-Dec. 1913 

 

 
 

Therefore, size will be related to average returns but beta will not. Most interestingly, when the value 
weighted portfolios are used in the analysis, be it univariate size sorting or conditional double size-beta sorting, beta or 
size is not significantly related to the average excess return (See Table 7, Panels A2, B2 and C2). This suggests that the 
result from the equally weighted portfolio is due to the influence of small stocks since it assigns equal weights to all 
stocks in portfolio formations and in the cross-sectional regressions. This confirms the sorting result in Table 5; size 
effect does not exist when stocks are value weighted in portfolios. We repeat the above analysis by adopting the Fama 
and French (1992) method. At the end of each year, the post-ranking betas estimated with the full period post-ranking 
returns will be assigned to each stock in the portfolio. Assigning full period post-ranking betas to stocks do not mean 
a stock’s beta is constant, as stocks can move across portfolios with yearly rebalancing. The method uses the 
information available for individual stocks in the cross section. Table 8 report the average slopes and intercepts of the 
cross-sectional regressions using equally and value weighted portfolios to estimate the post ranking betas.  

Intercept βMM β dim ln (Size) Intercept βMM β dim ln (Size)

-1.06% 1.05% -0.23% 0.31%
(-3.62) (3.46) (-0.83) (1.12)

-0.88% 0.86% -0.10% 0.20%
(-3.50) (3.43) (-0.45) (0.86)
2.12% -0.13% -0.34% 0.03%
(2.56) (-2.63) (-0.47) (0.79)

-0.42% 0.85% -0.03% -2.00% 0.62% 0.09%
(-0.40) (2.87) (-0.55) (-1.72) (1.74) (1.71)

-2.05% 1.08% 0.06% -2.45% 0.62% 0.12%
(-1.72) (3.50) (0.97) (-1.81) (1.76) (1.86)

Panel B1:  Size-βmm  Portfolios Panel B2: Size-βmm Portfolios 
0.26% 0.01% 0.29% -0.12%
(2.18) (0.09) (2.72) (-0.91)
1.63% -0.09% -0.36% 0.03%
(2.08) (-2.05) (-0.56) (0.91)
1.69% -0.03% -0.09% -0.03% -0.12% 0.02%
(2.35) (-0.20) (-2.18) (-0.05) (-0.89) (0.61)

Panel C1:  Size-βdim  Portfolios Panel C2: Size-βdim Portfolios 
0.17% 0.08% 0.27% -0.09%
(1.35) (0.56) (2.51) (-0.67)
1.69% -0.10% -0.22% 0.02%
(2.09) (-2.06) (-0.32) (0.63)
1.64% 0.01% -0.09% 0.10% -0.09% 0.01%
(2.17) (0.07) (-2.10) (0.15) (-0.64) (0.31)

EQUALLY WEIGHTED VALUE WEIGHTED

Each year,  we  sort  stocks  into ten  portfolios  based  on  their size  at  the end of  the  prior year.  Equally  
and value  weighted  portfolio  returns  are computed  each  month in the year. The joint  effect of size  and
beta is seperated by first  forming three size portfolios and splitting each  size group into five beta groups.

Panel A1: Size Portfolios Panel A2: Size Portfolios 

 ing betas  are used  in the cross-sectional regression.  t-statistics are in parenthesis.

This will yield 15 size-beta eqally and value weighted portfolios. In all portfolio formations we  use the  FM 
break  point.  Estimate  post-ranking  betas by using the full  period post-ranking excess returns. Post rank-
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The values in parentheses are the Newey West adjusted t-statistics for the test of a hypothesis of the average 
slope or intercept significantly different from zero. 
 

Table 8: Average Time Series Slopes and Intercepts from the Fama-French Cross-Sectional Regressions: 
Jan. 1868-Dec. 1913 

 

 
 

From Panel A1, when the full period equally weighted portfolio returns used to estimate post-ranking betas is 
formed on size alone, both MM and dim  have a strong relation with returns when placed alone in the regression. 
They lose their relationship when placed together with size in the regression. This indicates that beta, which is 
correlated with size serves as a proxy for size when placed alone in the regression.  

 
 
 
 
 
 
 

Intercept βmm βdim ln (Size) Intercept βmm βdim ln (Size)

-1,05% 1,04% -0,54% 0,65%
(-3,58) (3,44) (-2,57) (2,79)
-0,87% 0,85% -0,48% 0,58%
(-3,46) (3,42) (-2,58) (2,76)
2,63% -0,16% 2,63% -0,16%
(3,15) (-3,29) (3,15) (-3,29)
1,51% 0,37% -0,12% 2,43% 0,06% -0,15%
(1,34) (1,22) (-2,07) (2,44) (0,26) (-2,88)
1,16% 0,38% -0,10% 2,86% -0,10% -0,17%
(0,86) (1,20) (-1,43) (2,62) (-0,46) (-2,91)

Panel B1:  Size-βmm  Portfolios
0,31% -0,03% 0,26% 0,00%
(2,53) (-0,27) (2,27) (0,03)
2,63% -0,16% 2,63% -0,16%
(3,15) (-3,29) (3,15) (-3,29)
2,70% -0,07% -0,16% 2,77% -0,07% -0,16%
(3,54) (-0,59) (-3,39) (3,57) (-0,50) (-3,48)

Panel C1:  Size-βdim  Portfolios
0,21% 0,04% 0,17% 0,08%
(1,58) (0,28) (1,44) (0,54)
2,63% -0,16% 2,63% -0,16%
(3,15) (-3,29) (3,15) (-3,29)
2,69% -0,05% -0,16% 2,78% -0,05% -0,16%
(3,52) (-0,35) (-3,47) (3,55) (-0,37) (-3,55)

EQUALLY WEIGHTED VALUE WEIGHTED

Panel A2: Size Portfolios Panel A1: Size Portfolios 

Each year,  we  sort  stocks  into ten  portfolios  based  on  their  size at the  end of  the  prior year.  Equally  
and value  weighted  portfolio  returns are computed each  month  in  the year. The joint  effect of size  and
beta is  seperated  by  first forming three size portfolios and splitting each  size group into five beta groups.
This will yield 15 size-beta eqally  and value weighted portfolios. In all portfolio formations we  use the  FM 
break  point.  Estimate  post-ranking betas  by using the full  period post-ranking excess returns. We assign
post-ranking betas to the  constituent stocks in the portfolio. Portfolios are rebalanced each year.  t-statis-
tics are in parenthesis.

Panel B2:  Size-βmm  Portfolios

Panel C2:  Size-βdim  Portfolios
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Table 9: Average Time Series Slopes and Intercepts from the Fama-French Cross-Sectional Regressions 
without the first size decile: Jan. 1868-Dec.1913 

 

 
 

From Panels B1 and C1, conditional double sorting returns based on size and betas break the hold up 
between size and beta. It can be seen that beta has no relationship with excess return when it is placed alone or 
together with size. The result is similar when value weighted post-ranking returns are used to estimate post-ranking 
betas (See Panels A2, B2 and C2). For  robustness, we repeat the Fama and French (1992) cross-sectional analysis, but 
excluding stocks in the first size decile each year. As in the sorting method, Table 9 does not show the significant 
relationship between betas and expected returns when placed alone or combine with size for single sorted size 
portfolios in panel A1.  In Panels B1 and C1, double sorting stocks to form portfolios will not establish the 
relationship between betas, size and returns. When value weighted portfolio returns are used in the analysis, size and 
beta have no relationship with return as shown in panels A2, B2 and C2. This shows that any size effect present in our 
data is driven by a small group of stocks with an average relative market size of about 0.35%.  

Intercept βmm βdim ln (Size) Intercept βmm βdim ln (Size)

-0.21% 0.31% -0.17% 0.28%
(-0.92) (1.25) (-0.85) (1.37)

-0.10% 0.21% -0.11% 0.22%
(-0.50) (0.98) (-0.65) (1.24)
0.20% 0.00% 0.20% 0.00%
(0.28) (-0.07) (0.28) (-0.07)

-1.39% 0.54% 0.06% -0.88% 0.37% 0.04%
(-1.27) (1.83) (1.09) (-0.89) (1.55) (0.77)

-1.65% 0.51% 0.08% -1.22% 0.37% 0.06%
(-1.30) (1.67) (1.22) (-1.10) (1.61) (1.05)

Panel B1:  Size-βmm  Portfolios Panel B2:  Size-βmm  Portfolios
0.28% -0.09% 0.28% -0.10%
(2.70) (-0.74) (2.82) (-0.72)
0.20% 0.00% 0.20% 0.00%
(0.27) (-0.06) (0.27) (-0.06)
0.34% -0.10% 0.00% 0.52% -0.10% -0.02%
(0.55) (-0.79) (-0.10) (0.86) (-0.76) (-0.41)

Panel C1:  Size-βdim  Portfolios Panel C2:  Size-βdim  Portfolios
0.28% -0.08% 0.27% -0.08%
(2.57) (-0.62) (2.73) (-0.60)
0.20% 0.00% 0.20% 0.00%
(0.27) (-0.06) (0.27) (-0.06)
0.41% -0.09% -0.01% 0.55% -0.09% -0.02%
(0.68) (-0.67) (-0.22) (0.91) (-0.67) (-0.49)

 beta is seperated by first forming three size portfolios and splitting each  size group into five beta groups.
This will yield 15 size-beta eqally and value weighted portfolios. In all portfolio formations we  use the  FM 
break  point. Estimate post-ranking betas by using the full  period post-ranking excess returns. We assign
post-ranking betas to the  constituent stocks in the portfolio. Portfolios are rebalanced each year.  t-statis-
tics are in parenthesis.

EQUALLY WEIGHTED VALUE WEIGHTED

Panel A1: Size Portfolios Panel A2: Size Portfolios 

Each year,  we  sort  stocks  into ten  portfolios  based  on  their size at the end of  the  prior year.  Equally  
and value  weighted  portfolio  returns are computed each month in the year. The joint  effect of size  and
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Conclusion 

 

We used sorting and cross-sectional regression method to investigate whether the CAPM model is valid in the 
period before World War I. We find no support for the CAPM on the 19th century BSE. Estimating beta with the 
market model, the Dimson and the Vasicek model does not establish the cross-sectional relationship between average 
returns and the beta. However, when we use equally weighted size portfolios in the cross-sectional regressions, we 
find the relationship between average returns and size or beta. Size is negatively significantly related to excess returns 
(size effect) but beta does not relate to excess returns, when placed simultanously as regressors in the cross-sectional 
regression. This is due to a strong correlation that exists between size and beta. We find that, conditional double 
sorting portfolios by size and then by beta breaks the logjam between size and beta on excess returns. As a result, the 
average slope of the cross-sectional regression of returns on betas becomes insignificant when placed alone in the 
regression or combines with size. We recommend researchers to estimate betas with the Dimson method with the 
one-month lag since small stocks betas are underestimated when estimated with the market model with this data.  
Further investigation reveals that the size-effect in our data is mainly due to small stocks with relative market size of 
about 0.35% of the total market size. Eliminating these small stocks destroys the relationship between excess return, 
beta or size. Both the sorting and the cross-sectional regression methods reveal that the size effect disappears when 
the value weighted portfolios are used in the regression. Finally, in as much as our data is from a stock market which 
is over 140 years old, the relationship between average return, size and beta are consistent with the modern stock 
markets. Therefore, the behavior of size and beta in relation to the average return has remained the same on the 
market since the 19th century. 
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